

HightarmLbane Siobool

A LeveF urther Maths

C halleng eB ooklet

$$
\sqrt{-1} 2^{3} \Sigma \pi
$$

Reading List

As a student who ishoosingto study A Leveß urtherMaths, it's logical to assume you have an interest in the subjetche following books may pride additional reading for you beyond those suggest for MAAALevel.

How to think like a Mathematiciaby Kevin Houston
How to S olve iby George Polya
Fermat's Last Theorem by Simon Singh
The Mus ic of P rimelsy Marcus De Sautoy
Euler's Pioneering Equation by Robin Wilson
Archimedes' Revenge by P.Hoffman
Chaosand Fractals, Aelemental Introductionby David P. Feldman
Algorithms Unlockedy Thomas H. Cormen
The Tiger That Isn't: §img Through a World of Numbebs Andrew Dilnot and Michael Blastland

Why Do Buses Come in Threes?: The Hidden Mathematics ofl自wenife By Rob Eastaway \& Jeremy Wyndham

There is also much more digital media out there from videos, blogs, podcasts and interactive website. Here are a few you might want to visit.

Websites

http://vihart.com/
http://dailydesmos.com/
http://www.estimation180.com/
http://www.vis ualpatterns.org/
https://allthenews thats fittomath.blog s pot.com/
http://ptolemy.co.uk/2007/09/19/primitives/
https://www.ilovemathsgames.com/index.html
https://www.transum.org/
https://www.maths is fun.com/data/quincunx.html

Graphing S oftware

If you haven't already beenusing online graphical software now is the time to familiarise yourself with it, we recommend either Desmos or Geogebra both free software and easily downloadable.alybe havea look ata few online tutorials there are plenty of videsoout there.
https://www.desmos.com/calculator
https://www.geogebra.org/

Activities

The following tasks are provided for you to think more in depth about the Maths you have already met at GCSE Mathost have a link to a website where you can seek further guidance if needed.

TASK 1

https://undergroundmathematics.org/qadratics/inequalitiesfor-some occasions

Can we find a quadratinequality for each region othe Venndiagram?

The regions are defined as follows.
A: The solution set is a subset of $x \leq 1$.
B: The solutions are given by $a \leq x \leq b$ where a and b are real numbers.
C: The inequality is satisfied by $x=4$, e.g. $x=4$ satisfies the inequality $x \geq 2$.

Here are some possible inequalities. Start by placing these into the correct region of the Venn diagram.

| (1) | $x^{2} \leq 9$ | (2) | $11 x \geq 2 x^{2}$ | (3) | $x^{2}+3 \geq 2$ | (4) $3 x^{2} \geq 21 x-30$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (5) | $x^{2} \leq-x$ | (6) | $x^{2} \leq x-2$ | (7) | $6 x^{2}-1 \geq 5 x$ | (8) $-2 x^{2} \leq x-6$ |

Trigonometry Pile Up!

How long is this side?

TASK 3

https://nrich.maths.org/5970

Simultaneous Equations Sudoku

c		m				h			19
	f						e		10
			m						
			k		g	m	c		23
g				p					11
							h	f	14
	g				m				13
	a			e			k	h	11
k			c		f	a			22
17	19		16	5	22	14	16	14	

Rules of Equation Sudoku

Like the standard sudoku, this sudoku variant has two basic rules:

1. Each column, each row and each box (3×3 subgrid) must have the numbers 1 through 9.
2. No column, row or box can have two squares with the same number.
3. The puzzle can be solved by finding the values of the 9 given variables in the squares of the 9×9 grid. At the bottom and right side of the 9×9 grid are numbers, each of which is the sum of a column or row of variables. Altogether a set of 16 equations can be formed from the columns and rows of variables and constants.

Task 4

Task 5

https://donsteward.blogs pot.com/2017/11/twetangents-meet-on-y-axis.html

Two tangents to a circle

More on circles here

[^0]
Task 6

https://www.openmiddle.com/perfects quares/

PERFECT SQUARES

Directions: Using the digits 1-9, at most one time each, to fill in the boxes to make each expression evaluate to a perfect square number.

Extension/Challenge: What is the largest/smallest square number you can make? How many different perfect square numbers could be made?

$$
18 \times \square \times 2
$$

毋

$$
6 \times \square \times 2 \times \square
$$

Task 7

https://undergroundmathematics.org/thinkingsoutnumbers/absurd

Ab-surd!

Each line is a set of equivalent fractions. Fill in the blanks in the fractions to make each line complete, including the multiplier used to get from one fraction to the next.
(1) $\frac{1}{\sqrt{2}}(\times-)=\frac{\sqrt{2}}{}(\times-)=\frac{\sqrt{6}}{6}$
(2) $\frac{2}{5 \sqrt{3}}(\times-)=\frac{}{15}(\times-)=\frac{2 \sqrt{6}}{}(\times-)=\frac{}{60}$
(3) $\frac{5}{2+\sqrt{2}}(\times-)=\frac{10-5 \sqrt{2}}{}(\times-)=\frac{}{20+10 \sqrt{2}}$
(4) $\frac{2-\sqrt{3}}{4}(\times-)=\frac{}{8+4 \sqrt{3}}(\times-)=\frac{}{16}$

A rationalised fraction is one whose denominator is a whole number. These are usually easier to work with than fractions with square roots in their denominators.

- Identify the rationalised fractions in the above lines. What do you notice about the multipliers when moving from a fraction with a surd (square root) in the denominator to a rationalised fraction?
- How would you rationalise fractions in the following form: $\frac{a}{\sqrt{b}}, \frac{a}{b \sqrt{c}}$ and $\frac{a}{b+\sqrt{c}}$?
- Is there more than one way to rationalise a fraction?

Task 8

https://dons teward.blogs pot.com/search? $q=$ tangram+vectors

Tangram Vectors

given that the parallelogram has sides with vectors \mathbf{a} and \mathbf{b} heading away from the bottom left hand corner
what are the vectors for other lines in the tangram puzzle?

Task 9

Task 10

https://underg roundmathematics.org/geometryof-equations/r5281

C an we find an integer solution to three simultaneous inequalities?

From the inequalities

$$
y-2 x>0, \quad x+y>3, \quad 2 y-x<5
$$

deduce that

$$
\frac{1}{3}<x<\frac{5}{3}, \quad 2<y<\frac{10}{3}
$$

and hence that the given inequalities cannot be satisfied simultaneously by integral values of x and y.
[The phrase 'integral values' means the same as 'integer values'.]

Task 11

Indices-follow me.......
ever, wondered why?

StaRT	$\left(\frac{7}{2}\right)$	4	0.027	$\frac{16}{9}$	$\frac{2}{5}$	$-\frac{1}{8}$	$\frac{1}{400}$	1	27
A	T	P	N	1	S	T	R	H	F
8^{-1}	$\left(\frac{1}{7}\right)^{-2}$	$4^{\frac{3}{2}}$	$\left(\frac{1}{3}\right)^{-1}$	FINISH	$\left(\frac{27}{64}\right)^{-\frac{2}{3}}$	$(-3)^{-2}$	$\left(\frac{5}{3}\right)^{-2}$	$\left(\frac{9}{5}\right)^{-1}$	$36^{\frac{3}{2}}$

16	8	$\frac{1}{8}$	$\frac{9}{25}$	216	$\frac{1}{64}$	64	1000	$\frac{8}{3}$	$\frac{1}{36}$
I	0	N	0	Z	Y	T	0	I	E
$(0.3)^{3}$	$27^{\frac{2}{3}}$	$8^{\cdot 2}$	$\left(\frac{9}{64}\right)^{-\frac{1}{2}}$	$6^{\cdot 2}$	$(\cdot 2)^{\cdot 3}$	$\left(\frac{5}{3}\right)^{0}$	$81^{\frac{3}{4}}$	$\left(\frac{25}{4}\right)^{-\frac{1}{2}}$	20^{-2}

125	3	9	49	$\frac{1}{9}$	$\left(\frac{5}{9}\right)$	$\left(\frac{1}{1000}\right)$
E	G	W	O	H	E	R
$100^{-\frac{3}{2}}$	$\left(\frac{2}{7}\right)^{-1}$	$25^{\frac{3}{2}}$	$\left(\frac{1}{4}\right)^{-3}$	$(0.25)^{-2}$	$8^{\frac{2}{3}}$	$100^{\frac{3}{2}}$

Task 12

Races

Five children (Ahmed, Bachendri, Charlie, Daniel and Emily) raced each other. First they raced to the spreading chestnut tree, and then they raced back to their starting point. The following facts are known:
(i) Ahmed was fourth in the race to the tree.
(ii) The person who was last to the tree managed to win the race back.
(iii) The person who won the race to the tree was third on the way back.
(iv) The person who was third in the race to the tree was second on the way back.
(v) Bachendri was fourth on the way back.
(vi) Charlie reached the tree before Daniel.
(vii) Charlie got back to the start before Emily.

For each race (to the tree and back again), write down the order in which the children finished.

[^0]: https://www.transum.org/Maths/Exercise/Circle Equations.asp

